БИОСОВМЕСТИМЫЕ ПОЛИМЕРЫ. НАТУРАЛЬНЫЕ И СИНТЕТИЧЕСКИЕ ПОЛИМЕРЫ ДЛЯ БИОМЕДИЦИНЫ.

4 лекция

Биомедицинские полимеры

Биомедицинские полимеры – материалы, играющие важную роль в современной медицине. Они используются в тканевой инженерии, доставке лекарств и создании имплантатов..

Требования к биомедицинским полимерам

Биосовместимость

Отсутствие токсичности и иммунного ответа – ключевое требование.

Биоразлагаемость

Полимер должен контролируемо разлагаться в организме. Механические свойства

Материал должен соответствовать

механическим

требованиям применения.

Стерилизуемость

Возможность эффективной стерилизации без изменения свойств.

Преимущества полимеров в медицине:

- Биологическая совместимость:
- Полимеры не вызывают отторжения, токсичности или канцерогенных эффектов.
- Высокие физико-механические свойства:
- Обеспечивают прочность, эластичность и износостойкость.
- Возможность создания биоразлагаемых материалов:
- Позволяет использовать временные имплантаты и шовные материалы, которые растворяются в организме.
- Возможность модификации:
- Полимеры можно использовать в виде композитов, смешивая различные компоненты для получения уникальных свойств, а также создавать "умные" полимеры, реагирующие на внешние раздражители.

• Полимеры широко применяются в современной медицине для создания протезов, имплантатов, шовных материалов, медицинских приборов и упаковки, а также в качестве основы для лекарственных форм. Они используются благодаря своей биологической совместимости, прочности, эластичности и возможности создания как долговечных, так и биоразлагаемых (рассасывающихся) материалов.

Области применения полимеров в медицине:

- Хирургия и травматология:
- Протезирование: Полимеры имитируют внутренние органы (сосуды, клапаны сердца, пищевод), а также используются для восстановления костей и суставов, например, в виде пластических имплантатов для черепа.
- Шовные материалы: Существуют как нерассасывающиеся (полипропилен), так и биоразлагаемые (монокрил) нити, которые растворяются в организме, исключая повторную операцию по удалению.
- Иммобилизирующие повязки: Современной альтернативой гипсу стали жесткие фиксирующие повязки из пластика.
- Сетчатые имплантаты: Используются для укрепления брюшной стенки, комбинируя долговечный полипропилен с рассасывающимся материалом.

Стоматология:

Протезирование: Изготавливаются искусственные зубы и полные протезы из полиакриловых полимеров, которые имитируют цвет собственных зубов и обладают необходимой прочностью.

Ортодонтические аппараты: Полимеры используются для создания конструкций для коррекции прикуса

Офтальмология:

- Искусственные хрусталики и радужная оболочка: Создаются на основе акриловых полимеров.
- Контактные линзы и оправы для очков: Изготавливаются из прозрачных полимеров.

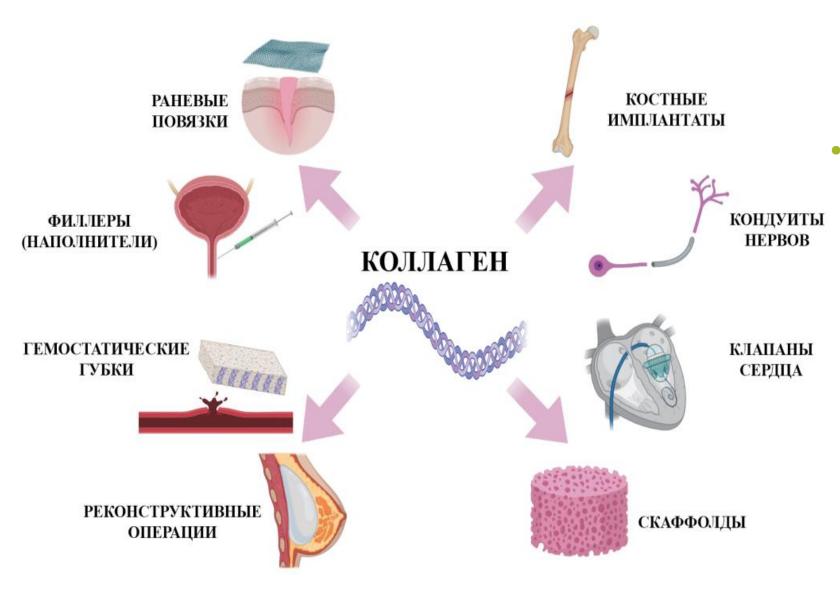
Фармакология:

- **Лекарственные формы:** Полимеры служат основой для паст, мазей и пластырей, а также для стабилизации растворов, эмульсий и суспензий.
- **Носители лекарств:** Биоразлагаемые полимеры могут использоваться для создания систем доставки лекарств, которые постепенно высвобождают препарат в организме.

Создание медицинских изделий и приборов:

- Инструменты и оборудование: Из полимеров изготавливают различные детали медицинских инструментов, трубок, деталей дыхательной аппаратуры, шприцы и др.
- Упаковка: Полимерные материалы применяются для упаковки и хранения лекарств, крови и плазмозаменителей.

Natunal Polymers


Обзор натуральных полимеров

- Преимущества
 Биосовместимость,
 биоразлагаемость и
 природное происхождение.
- 2 Недостатки
 Ограниченные
 механические свойства,
 возможный иммунный
 ответ.

3 Типы

Коллаген, гиалуроновая кислота, альгинат, хитин и хитозан.

Коллаген:

• Белковая фракция животных тканей, почти не обладающая антигенными свойствами, используется для создания биоматриц, которые могут заменить костную, хрящевую и другую живую ткань.

Применение коллагена в медицине:

• Хирургия:

• Коллагеновые материалы используются для создания кровоостанавливающих губок, которые способствуют остановке кровотечений в ранах и хирургических вмешательствах.

• Тканевая инженерия:

• Коллагеновые матрицы и конструкции создаются для восстановления и регенерации поврежденных тканей, например, в тканеинженерных конструкциях для восстановления костей и хрящей.

Косметология и дерматология:

• Коллаген применяется для улучшения состояния кожи, повышения ее эластичности и упругости, а также для ускорения регенерации тканей после ран и ожогов.

• Лечение суставов и костей:

• Коллагеновые добавки и материалы помогают укрепить костную ткань, повышают прочность хрящей и способствуют их восстановлению при заболеваниях, таких как остеоартрит.

• Кардиология:

• Коллаген важен для формирования стенок артерий, обеспечивая их эластичность, что помогает предотвращать сердечно-сосудистые заболевания.

Коллаген: Свойства и применение

Структура

Типы I, II, III.

Получение

Методы получения и очистки.

Применение

Тканевая инженерия кожи, костей и хрящей.

Примеры

Кожные имплантаты.

Гиалуроновая кислота

Структура

Функции в организме.

Получение

Ферментация,

выделение из тканей.

Применение

Гели для инъекций, офтальмология,

доставка лекарств.

Гиалуроновая кислота является натуральным биополимером, играющим ключевую роль в увлажнении и поддержании упругости тканей, а также участвующим в регенерации. В медицине её применяют как эндопротез суставной жидкости при остеоартрите, в косметологии для омоложения и коррекции черт лица, а также для лечения ран и восстановления слизистой пищевода.

Свойство ГК

• Натуральный биополимер:

• Это длинная цепочка молекул, естественным образом синтезируемая в организме, в частности фибробластами.

• Гидрофильность:

• Способна притягивать и удерживать большое количество воды, что обеспечивает увлажнение и придает тканям упругость и пластичность.

• Биосовместимость:

• Иммунологически инертна, поэтому не отторгается организмом, что важно для медицинских применений.

Применение в медицине

•Ортопедия:

•При остеоартрите в сустав вводится препарат, аналогичный естественной синовиальной жидкости, что восстанавливает смазку, подвижность суставов и уменьшает боль.

•Косметология:

•Используется в инъекционных филлерах для разглаживания морщин, увеличения объема губ и коррекции контуров лица, стимулируя выработку собственной кислоты.

•Заживление ран:

•Ускоряет процесс восстановления, регулирует воспаление и способствует организации внеклеточного матрикса, что делает ее компонентом современных повязок.

•Офтальмология:

•Применяется в качестве среды при проведении глазных операций и для сохранения трансплантированных клеток.

•Другие области:

•Входит в состав препаратов для лечения гастроэзофагеальной рефлюксной болезни (ГЭРБ) и исследуется на предмет применения в онкологии.

Хитозан

• Хитозан — это природный биосовместимый и биоразлагаемый полимер, получаемый из хитина ракообразных, который широко используется в медицине благодаря своим сорбционным, антибактериальным и регенеративным свойствам. Он применяется как компонент лекарственных форм для доставки медикаментов, в раневых покрытиях, биоразлагаемых материалах, а также для снижения холестерина и улучшения работы ЖКТ благодаря его способности связывать токсины и нормализовать микрофлору кишечника.

Свойства хитозана, применяемые в медицине: • Биосовместимость и биоразлагаемость:

- Хитозан нетоксичен и распадается в организме, что делает его безопасным для применения.
- Сорбционная активность:
- Способен связывать и выводить из организма токсины, тяжелые металлы и пищевые жиры, что помогает снижать уровень холестерина и очищать ЖКТ.
- Антибактериальные свойства:
- Подавляет рост патогенной микрофлоры и может быть использован для создания антибактериальных покрытий и пленок.
- Мукоадгезивные свойства:
- Прилипает к слизистым оболочкам, что позволяет использовать его для доставки лекарств через нос, глаза и ротовую полость.
- Регенеративные свойства:
- Активизирует процессы регенерации клеток и способствует заживлению ран и ожогов.

Применение в медицине:

- Фармацевтика:
- Доставка лекарств: Используется для создания покрытий капсул, например, альгинатных капсул с пробиотиками для защиты от желудочного сока.
- Вспомогательное вещество: В таблетках для перорального применения, замедляя высвобождение активного ингредиента и повышая эффективность препарата.
- Раневые покрытия:
- Гидрогели на основе хитозана создают защитную оболочку для ран и доставляют антибактериальные агенты.
- Регенеративная медицина:
- Применяется для создания биоразлагаемых швов, мембран и материалов для клеточной иммобилизации.
- Средства для улучшения здоровья:
- Снижение холестерина: Связывает желчные кислоты и холестерин, выводя их из организма.
- Нормализация ЖКТ: Поддерживает рост полезных бактерий и подавляет патогенную флору.

Пироко используемые полимеры и примеры их применения

Полиметилметакрилат	Твердые контактные линзы, внутриглазные линзы, ко-	
	стные цементы, основа зубных протезов	
Полиэтилен с ультравысоким	Несущие поверхности в искусственных суставах	
молекулярным весом		
Полиэтилентерефталат	Искусственные артерии	
Полиуретан	Катетеры	
Полигидроксилэтилметакрилат	Мягкие контактные линзы, перевязочный материал,	
	матрицы для депонирования лекарственных препаратов	
Полипропилен	Шовный материал, клапаны сердца, суставы пальцев	
Силикон	Имплантаты молочной железы, лицевые устройства	
Полигликолид, полилактид	Биоразрушаемый шовный материал	

АЖНЕЙШИЕ ИМПЛАНТАНТЫ И ПОЛИМЕРЫ ДЛЯ ИХ ИЗГОТОВЛЕНИЯ

ИМПЛАНТАНТ	полимеры
Трахея	Полиакрилаты, полисилоксаны, полиамиды
Сердце и его части	Полиуретаны. Полиэтилентерефталат, полисилоксаны
Части лёгкого, почки и печени	Полиэтилентерефталат, поливинилхлорид
Части пищевода	Полиэтилен, полипропилен
Части желудоч но-кишечного тракта	Полисилоксаны, поливинилхлорид, полиамид
Кровеносные сосуды	Полиэтилентерефталат, политетрафторэтилен, полипропилен
Кости и суставы	Полиакрилаты, полиамиды, полиэтилен, полиуретаны, полипропилен
Суставы пальцев рук	Полисилоксаны, полиэтилен (сверхмолекулярный0
Связки, сухожилия	Полиэтилентерефталат, полиамиды

Полилактид

• Полилактид (полимолочная кислота) в медицине используется благодаря своей биосовместимости и биоразлагаемости, что позволяет создавать шовный материал, имплантаты (например, для костной фиксации) и системы доставки лекарств. В эстетической косметологии полилактид применяется в филлерах и нитевых имплантатах для стимуляции выработки коллагена и восстановления объемов тканей.

Полилактид (PLA)

Получение Полимеризация лактида. Свойства Термостойкость, механическая прочность. Применение Шовные материалы, винты для костей.

Перспективы

Улучшение свойств.

Области применения полилактида:

• Хирургия и ортопедия:

• Для изготовления хирургических нитей, штифтов, пластин и стержней, которые со временем разлагаются в организме, что исключает необходимость их повторного удаления.

• Косметология:

• Используется как биостимулятор для производства филлеров и в нитевом лифтинге.

• Системы доставки лекарств:

• Полилактид может служить матрицей для создания форм пролонгированного действия, обеспечивая постепенное высвобождение активных веществ.

Преимущества полилактида:

• Биосовместимость:

• Материал не вызывает отторжения и аллергических реакций, так как является производным молочной кислоты, которая естественным образом вырабатывается в организме.

• Биоразлагаемость:

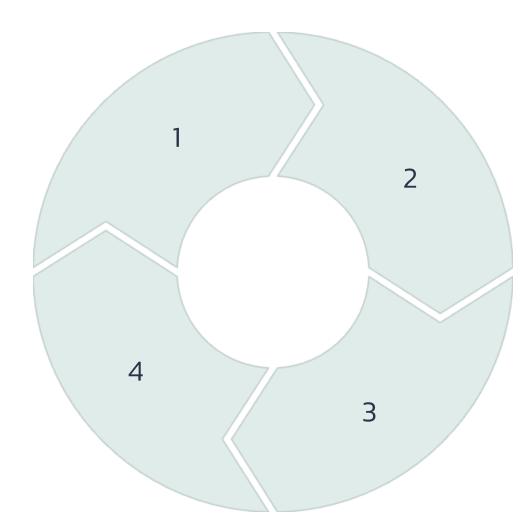
• Со временем полилактид распадается на безвредные компоненты (воду и углекислый газ), которые выводятся из организма естественным путем.

• Регулируемые свойства:

• Путем введения в полимер других мономеров (например, гликолида) можно контролировать скорость его биодеградации и механические свойства, что важно для медицинских применений.

• Применение в 3D-печати:

• Полилактид используется для создания сложных биомедицинских компонентов и анатомических моделей, что позволяет персонализировать медицинские изделия


Полиэтиленгликоль (PEG)

Структура

Гидрофильность, гибкость.

Преимущества

Увеличение времени циркуляции.

Получение

Методы получения.

Применение

Модификация белков, лекарств, наночастиц.

• Полиэтиленгликоль (ПЭГ) широко используется в медицине как основа для лекарств, слабительное средство для лечения запоров и подготовки к колоноскопии, а также как компонент для адресной доставки лекарств, например, в составе липосом для лечения рака. Он также применяется для создания оболочек лекарственных средств, предотвращая их быстрое выведение из организма

• **Липосомы:** ПЭГ служит для создания оболочек липосом — «пузырьков» из жиров, которые инкапсулируют лекарственное средство. Эти ПЭГ-липосомы могут накапливаться в опухолях и используются в препаратах, например, для лечения рака яичников, саркомы Капоши и болезни Рустицкого-Калера.

• "Скрытие" антигенов: ПЭГ используется для маскировки антигенов на мембране клеток, что снижает иммуногенность эритроцитов и предотвращает их быстрое выведение из организма после трансфузии.

Системы доставки лекарств:

• Слабительные средства:

- ПЭГ, особенно в виде <u>полиэтиленгликоля</u> <u>3350</u>, используется для лечения и профилактики запоров, так как он удерживает воду в кишечнике, размягчая стул и облегчая его выведение.
- Подготовка к эндоскопическим исследованиям:
- Растворы на основе полиэтиленгликоля применяются для полного очищения кишечника перед такими процедурами, как колоноскопия.


Преимущества и безопасность:

ПЭГ обладает нетоксичностью, биологической инертностью и хорошей растворимостью, что делает его безопасным для использования в различных медицинских и косметических продуктах.

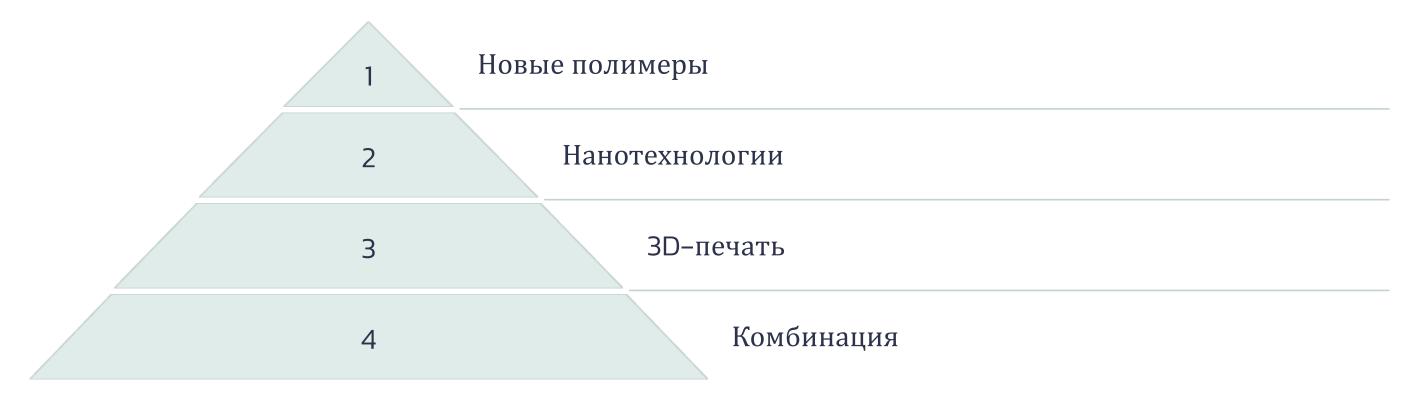
ПЭГ-3350 считается безопаснее других средств для лечения запоров, поскольку не вызывает всасывания солей и имеет ограниченные побочные эффекты.

<u>I группа. Полимерные материалы, предназначенные для вве-</u> дения в организм:

- «внутренние» протезы, пломбы, искусственные органы;
- - клеи;
- шовный и перевязочный материалы;
- плазмо и кровезаменители, дезинтоксикаторы, интерфероногены, антидоты;
- лекарственные препараты, изготовленные на основе полимеров (в том числе — ионитов);
- полимеры, используемые в технологии лекарственных форм (защитные пленки, капсулы и микрокапсулы, вспомогательные вещества и т. п.).

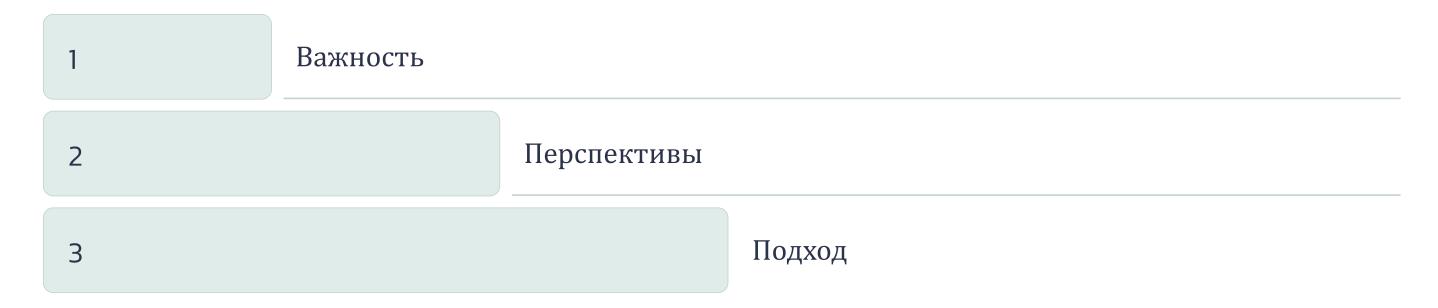
II группа. Полимерные материалы, контактирующие с тканями организма, а также с веществами, которые в него вводятся:

- тара для упаковки и хранения лекарственных средств, крови и плазмозаменителей;
- полимеры, применяемые в стоматологии (кроме пломб);
- хирургический инструментарий, шприцы;
- узлы и детали для медицинских аппаратов и приборов, в том числе полупроницаемые мембраны.



III группа. Полимерные материалы, не предназначенные для введения и не контактирующие с веществами, вводимыми в организм:

- полимеры, применяемые в анатомии и гистологии;
- предметы ухода за больными;
- лабораторная посуда, штативы и т. п.;
- оборудование операционных и больниц;
- - оправы и линзы для очков;
- протезно-ортопедические изделия (в том числе - обувь);
- больничные одежда, белье, постельные принадлежности.



Современные тенденции

Разработка новых биоразлагаемых полимеров с улучшенными свойствами. Использование нанотехнологий для создания полимерных систем доставки лекарств. Комбинация натуральных и синтетических полимеров для достижения оптимальных свойств.

Заключение

Биомедицинские полимеры важны для развития современной медицины. Перспективы исследований в этой области огромны. Междисциплинарный подход необходим для создания новых биоматериалов.